Econometrics, economics, finance, random rants.

Econometrics, economics, finance, random rants...

Monday, October 10, 2016

Machine Learning vs. Econometrics, II

My last post focused on one key distinction between machine learning (ML) and econometrics (E):   non-causal ML prediction vs. causal E prediction.  I promised later to highlight another, even more important, distinction.  I'll get there in the next post.

But first let me note a key similarity.  ML vs. E in terms of non-causal vs. causal prediction is really only comparing ML to "half" of E (the causal part).  The other part of E (and of course statistics, so let's call it E/S), going back a century or so, focuses on non-causal prediction, just like ML.  The leading example is time-series E/S.  Just take a look at an E/S text like Elliott and Timmermann (contents and first chapter here; index here).  A lot of it looks like parts of ML.  But it's not "E/S people chasing ML ideas"; rather, E/S has been in the game for decades, often well ahead of ML.

For this reason the E/S crowd sometimes wonders whether "ML" and "data science" are just the same old wine in a new bottle.  (The joke goes, Q: What is a "data scientist"?  A: A statistician who lives in San Francisco.)  ML/DataScience is not the same old wine, but it's a blend, and a significant part of the blend is indeed E/S.

To be continued...

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.