Check out this informative paper from the Federal Reserve Bank of New York: "Macroeconomic Nowcasting and Forecasting with Big Data", by Brandyn Bok, Daniele Caratelli, Domenico Giannone, Argia Sbordone, and Andrea Tambalotti.
Key methods for confronting big data include (1) imposition of restrictions (for example, (a) zero restrictions correspond to "sparsity", (b) reduced-rank restrictions correspond to factor structure, etc.), and (2) shrinkage (whether by formal Bayesian approaches or otherwise).
Bok et al. provide historical perspective on use of (1)(b) for macroeconomic nowcasting; that is, for real-time analysis and interpretation of hundreds of business-cycle indicators using dynamic factor models. They also provide a useful description of FRBNY's implementation and use of such models in policy deliberations.
It is important to note that the Bok et al. approach nowcasts current-quarter GDP, which is different from nowcasting "the business cycle" (as done using dynamic factor models at FRB Philadelphia, for example), because GDP alone is not the business cycle. Hence the two approaches are complements, not substitutes, and both are useful.
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.