Saturday, October 14, 2017

Machine Learning and Macro

Earlier I posted here on machine learning and central banking.  Here's something related.  

Last week Penn's Warren Center hosted a timely and stimulating conference, "Machine Learning for Macroeconomic Prediction and Policy".  The program appears below.  Papers were not posted, but with a little Googling you should be able to obtain those that are available.

Conference on Machine Learning for Macroeconomic Prediction and Policy

October 12 and 13, 2017

Glandt Forum, Singh Center for Nanotechnology

Co-Sponsored by Penn’s Warren Center for Network and Data Sciences
        and the Federal Reserve Bank of Philadelphia

Organizers: Michael Dotsey (FRBP), Jesus Fernandez-Villaverde (Penn), Michael Kearns (Penn)


Thursday October 12:

8:00 Breakfast

8:45 Welcome

9:00 Stephen Hansen (University of Oxford): The Long-Run Information Effect of Central Bank Text

9:45 Stephen Ryan (Washington University): Classi cation Trees for Heterogeneous Moment-Based Models

10:30 Break

11:00 James Cowie (DeepMacro): DeepMacro Data Challenges

11:45 Galo Nuno (Banco de España): Machine Learning and Heterogeneous Agent Models

12:30 Lunch

1:30: Francis X. Diebold (Penn): Egalitarian LASSO for Combining Central Bank Survey Forecasts

2:15 Lyle Ungar (Penn): How to Make Better Forecasts

3:00 Vegard Larsen (Norges Bank): Components of Uncertainty

3:45 Break

4:15 Panel: ML and Econometrics: Similarities and Differences (Michael Kearns, Vegard Larsen, Stephen Hansen, Rakesh Vohra (Penn))

Friday October 13:

9:00 Aaron Smalter Hall (Federal Reserve Bank of Kansas City): Recession Forecasting with Bayesian Classification

9: 45 Susan Athey (Stanford GSB): Estimating Heterogeneity in Structural Parameters Using Generalized Random Forests

10:30 Break

11:00 Panel: ML Challenges at the Fed (Jose Canals-Cerda (Philadelphia Fed), Galo Nuno, Jesus Fernandez-Villaverde, Aaron Smalter Hall)

12:30 Lunch